班.级.规.模.及.环.境--热.线:4008699035 手.机:15921673576( 微.信.同.号) |
坚持小班授课,为保证培训效果,增加互动环节,每期人数限3到5人。 |
上.课.时.间.和.地.点 |
上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【北京分部】:北京中山学院/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【石家庄分部】:河北科技大学/瑞景大厦 【广州分部】:广粮大厦 【西安分部】:协同大厦
最近开课时间(周末班/连续班/晚班):即将开课,详情请咨询客服! |
实.验.设.备 |
☆资深工程师授课
☆注重质量
☆边讲边练
☆合格学员免费推荐工作
★实.验.设.备请点击这儿查看★ |
质.量.保.障 |
1、免费重修;
2、课程结束后,授课老师留联系方式,保障培训效果,免费技术支持。
3、推荐机会。 |
课程大纲 |
|
datastage高级培训
Datastage高级培训
课程大纲:
(1). Parallel Framework Architecture
1. parallel processing architecture
2. pipeline and partition parallelism
3. role of configuration file
(2). job's compile and execution
1. main part of configuration file
2. compile process and OSH generated
3. role and part of Score
(3). partitioning and collectioning
1. how partitioning works in Framework
2. select collectioning and partitioning algorithms
3. view collector and partitioners in Score
(4). Sorting
1. soring data in parallel framework
2. reduce the number of inserted sorts in scores
3. optimize the Fork-join jobs
(5). Buffer
1. how buffer works
2. buffer tuning
3. avoid buffer contentions
(6). Data types
1. virtual data set
2. schemas
3. handle nulls
4. complex data etc.
(7). Reusable components
1. schema file and use it read sequential file
2. Runtime Column Progation (RCP)
3. shared containers
(8). Transformer Logic
1. null handling
2. Loop processing
3. groups
(9). Extend the datastage function
1. Wrapped stages
2. Build stages
3. External Function routines
4. Custom stages
(10). best practice
1. stage usage including lookup,Aggregator, transformaer etc...
2. performance tuning
|