曙海教育集团
全国报名免费热线:4008699035 微信:shuhaipeixun
或15921673576(微信同号) QQ:1299983702
首页 课程表 在线聊 报名 讲师 品牌 QQ聊 活动 就业
 
Advanced Lua培训
 
   班级人数--热线:4008699035 手机:15921673576( 微信同号)
      增加互动环节, 保障培训效果,坚持小班授课,每个班级的人数限3到5人,超过限定人数,安排到下一期进行学习。
   授课地点及时间
上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【北京分部】:北京中山学院/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【广州分部】:广粮大厦 【西安分部】:协同大厦 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【石家庄分部】:河北科技大学/瑞景大厦
开班时间(连续班/晚班/周末班):即将开课,详情请咨询客服!
   课时
     ◆资深工程师授课
        
        ☆注重质量 ☆边讲边练

        ☆若学员成绩达到合格及以上水平,将获得免费推荐工作的机会
        ★查看实.验.设.备详情,请点击此处★
   质量以及保障

      ☆ 1、如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
      ☆ 2、在课程结束之后,授课老师会留给学员手机和E-mail,免费提供半年的课程技术支持,以便保证培训后的继续消化;
      ☆3、合格的学员可享受免费推荐就业机会。
      ☆4、合格学员免费颁发相关工程师等资格证书,提升您的职业资质。

课程大纲
 
  • The course is divided into three separate days, the third being optional.
  • Day 1 Machine Learning & Deep Learning: theoretical concepts
    1. Introduction IA, Machine Learning & Deep Learning
  • History, basic concepts and usual applications of artificial intelligence far
  • Of the fantasies carried by this domain
  • Collective Intelligence: aggregating knowledge shared by many virtual agents
  • Genetic algorithms: to evolve a population of virtual agents by selection
  • Usual Learning Machine: definition.
  • Types of tasks: supervised learning, unsupervised learning, reinforcement learning
  • Types of actions: classification, regression, clustering, density estimation, reduction of
  • dimensionality
  • Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree
  • Machine learning VS Deep Learning: problems on which Machine Learning remains
  • Today the state of the art (Random Forests & XGBoosts)
  • 2. Basic Concepts of a Neural Network (Application: multilayer perceptron)
  • Reminder of mathematical bases.
  • Definition of a network of neurons: classical architecture, activation and
  • Weighting of previous activations, depth of a network
  • Definition of the learning of a network of neurons: functions of cost, backpropagation,
  • Stochastic gradient descent, maximum likelihood.
  • Modeling of a neural network: modeling input and output data according to
  • The type of problem (regression, classification ...). Curse of dimensionality. Distinction between
  • Multifeature data and signal. Choice of a cost function according to the data.
  • Approximation of a function by a network of neurons: presentation and examples
  • Approximation of a distribution by a network of neurons: presentation and examples
  • Data Augmentation: how to balance a dataset
  • Generalization of the results of a network of neurons.
  • Initialization and regularization of a neural network: L1 / L2 regularization, Batch
  • Normalization ...
  • Optimization and convergence algorithms.
  • 3. Standard ML / DL Tools
  • A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.
  • Data management tools: Apache Spark, Apache Hadoop
  • Tools Machine Learning: Numpy, Scipy, Scikit
  • DL high level frameworks: PyTorch, Keras, Lasagne
  • Low level DL frameworks: Theano, Torch, Caffe, Tensorflow
  • Day 2 Convolutional and Recurrent Networks
    4. Convolutional Neural Networks (CNN).
  • Presentation of the CNNs: fundamental principles and applications
  • Basic operation of a CNN: convolutional layer, use of a kernel,
  • Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and
  • 3D.
  • Presentation of the different CNN architectures that brought the state of the art in classification
  • Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of
  • Innovations brought about by each architecture and their more global applications (Convolution
  • 1x1 or residual connections)
  • Use of an attention model.
  • Application to a common classification case (text or image)
  • CNNs for generation: superresolution, pixeltopixel segmentation. Presentation of
  • Main strategies for increasing feature maps for image generation.
  • 5. Recurrent Neural Networks (RNN).
  • Presentation of RNNs: fundamental principles and applications.
  • Basic operation of the RNN: hidden activation, back propagation through time,
  • Unfolded version.
  • Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).
  • Presentation of the different states and the evolutions brought by these architectures
  • Convergence and vanising gradient problems
  • Classical architectures: Prediction of a temporal series, classification ...
  • RNN Encoder Decoder type architecture. Use of an attention model.
  • NLP applications: word / character encoding, translation.
  • Video Applications: prediction of the next generated image of a video sequence.
  • Day 3 Generational Models and Reinforcement Learning
    6. Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).
  • Presentation of the generational models, link with the CNNs seen in day 2
  • Autoencoder: reduction of dimensionality and limited generation
  • Variational Autoencoder: generational model and approximation of the distribution of a
  • given. Definition and use of latent space. Reparameterization trick. Applications and
  • Limits observed
  • Generative Adversarial Networks: Fundamentals. Dual Network Architecture
  • (Generator and discriminator) with alternate learning, cost functions available.
  • Convergence of a GAN and difficulties encountered.
  • Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.
  • Applications for the generation of images or photographs, text generation, super
    resolution.
  • 7. Deep Reinforcement Learning.
  • Presentation of reinforcement learning: control of an agent in a defined environment
  • By a state and possible actions
  • Use of a neural network to approximate the state function
  • Deep Q Learning: experience replay, and application to the control of a video game.
  • Optimization of learning policy. Onpolicy && offpolicy. Actor critic
  • architecture. A3C.
  • Applications: control of a single video game or a digital system.
 
 
  备案号:沪ICP备08026168号 .(2014年7月11)...................
友情链接:Cadence培训 ICEPAK培训 PCB设计培训 adams培训 fluent培训系列课程 培训机构课程短期培训系列课程培训机构 长期课程列表实践课程高级课程学校培训机构周末班培训 南京 NS3培训 OpenGL培训 FPGA培训 PCIE培训 MTK培训 Cortex训 Arduino培训 单片机培训 EMC培训 信号完整性培训 电源设计培训 电机控制培训 LabVIEW培训 OPENCV培训 集成电路培训 UVM验证培训 VxWorks培训 CST培训 PLC培训 Python培训 ANSYS培训 VB语言培训 HFSS培训 SAS培训 Ansys培训 短期培训系列课程培训机构 长期课程列表实践课程高级课程学校培训机构周末班 曙海 教育 企业 学院 培训课程 系列班 长期课程列表实践课程高级课程学校培训机构周末班 短期培训系列课程培训机构 曙海教育企业学院培训课程 系列班