班.级.规.模.及.环.境--热.线:4008699035 手.机:15921673576( 微.信.同.号) |
每个班级的人数限3到5人,互动授课, 保障效果,小班授课。 |
上间和地点 |
上部份地点:【上海】同济大学(沪西)/新城金郡商务楼(11号线白银路站)【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院【北京分部】:北京中山学院/福鑫大楼【南京分部】:金港大厦(和燕路)【武汉分部】:佳源大厦(高新二路)【成都分部】:领馆区1号(中和大道)【沈阳分部】:沈阳理工大学/六宅臻品【郑州分部】:郑州大学/锦华大厦【石家庄分部】:河北科技大学/瑞景大厦 最近开间(周末班/连续班/晚班):2019年1月26日 |
实.验.设.备 |
◆小班教学,教学效果好 ☆注重质量☆边讲边练 ☆合格学员免费推荐工作 ★实.验.设.备请点击这儿查看★ |
质.量.保.障 |
1、免费重修; 2、课程结束后,授课老师留联系方式,保障培训效果,免费技术支持。 3、推荐机会。☆合格学员免费颁发相关工程师等资格证书,提升职业资质。专注高端技术培训15年,曙海学员的能力得到大家的认同,受到用人单位的广泛赞誉,曙海的证书受到广泛认可。 |
部份程大纲 |
|
1.SPSS的介绍
1.1 实例演示。(可免费试看)
1.2 spss的特点。
1.3 spss界面介绍(综合设置、help帮助介绍)。
1.4 spss数据变量详解:变量类型、缺失值、变量测量等。
2.数据的输入与保存
2.1 数据获取:
2.1.1 单选题、多选题与开放题的数据的录入。
2.1.2 spss不同文件格式及外部数据(非spss数据格式)的导入。
2.2 个体水平数据集(宽型数据)与测量水平(长型数据)数据集的异同。
3. 数据预分析
3.1 数据清理
3.1.1 数据的选择
3.1.2 数据的合并
3.1.3 数据的拆分
3.1.4 检查异常值
3.1.5 个案的加权
3.1.6 缺失值
3.2 新变量生成,SPSS函数
3.3 使用SPSS变换数据结构——转置和重组
3.4 常用的描述性统计分析功能
3.4.1 频率过程
3.4.2 描述过程
3.4.3 探索过程
3.5 使用SPSS绘制常用统计图形
3.5.1散点图
3.5.2条图
3.5.3控制图
3.5.4 ROC曲线
4. 数据分析
4.1 假设检验
4.1.1 假设检验的原理
4.1.2 了解均值的显著性检验
4.2 差异分析及相关分析过程
4.2.1 均值过程、T检验与方差分析
4.2.2 案例分析1:产品质量差异分析
4.2.2 卡方分析
4.2.2.1 卡方分析原理
4.2.2.2 案例分析2:企业选址的区位分析
4.2.3 相关分析
4.2.4 偏相关分析
4.2.5 距离分析
4.3 回归分析基础
4.3.1 简单回归分析
4.3.2 多元回归分析
4.3.2.1 逐步回归
4.3.2.2回归预测与残差分析
4.3.2.3方差不齐与强影响点的处理
—加权最小二乘法与最小一乘法
4.3.2.4共线性的处理—岭回归(ridge regression)
4.3.2.5注意问题
4.3.2.6案例分析3:产品合格率的影响因素及其预测分析
4.3.3 logistic回归分析
案例分析4:客户违约信息研究
4.3.4 曲线估计
4.4 因子分析与聚类分析
4.4.1 主成分分析与因子分析
4.4.2 快速聚类法与聚类法
4.4.3 判别分析
4.4.4案例分析5:客户购买力信息研究
4.5 对应分析
4.5.1对应分析原理
4.5.2简单对应分析
4.5.3多元对应分析(最优尺度分析)
4.5.4案例分析6:企业选址的区位分析(案例2)
4.6 bootstrap技术
4.6.1 bootstrap原理
4.6.2 bootstrap应用
4.6.3 bootstrap功能在SPSS中的实现
5. 使用SPSS制作数据分析的统计报表
5.1 制作报表前对变量的检查
5.2 制作报表的中对不同类型的数据处理
5.3 报表生成功能与其他选项的区别
5.4 注意事项
6. SPSS编程操作
6.1 程序编辑窗口操作入门
6.2 基本语句
6.3 结构化语句
6.4 实例讲解spss编程
|