|
Natural Language Processing - AI/Robotics培训
|
|
班.级.规.模.及.环.境--热.线:4008699035 手.机:15921673576( 微.信.同.号) |
每个班级的人数限3到5人,互动授课, 保障效果,小班授课。 |
上间和地点 |
上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【北京分部】:北京中山学院/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【石家庄分部】:河北科技大学/瑞景大厦 【广州分部】:广粮大厦 【西安分部】:协同大厦 最近开间(周末班/连续班/晚班):2018年3月18日 |
实.验.设.备 |
◆小班教学,教学效果好 ☆注重质量☆边讲边练 ☆合格学员免费推荐工作 ★实.验.设.备请点击这儿查看★ |
质.量.保.障 |
1、免费重修; 2、课程结束后,授课老师留联系方式,保障培训效果,免费技术支持。 3、推荐机会。☆合格学员免费颁发相关工程师等资格证书,提升职业资质。专注高端技术培训15年,曙海学员的能力得到大家的认同,受到用人单位的广泛赞誉,曙海的证书受到广泛认可。 |
课程大纲 |
|
- Detailed training outline
- Introduction to NLP
Understanding NLP
NLP Frameworks
Commercial applications of NLP
Scraping data from the web
Working with various APIs to retrieve text data
Working and storing text corpora saving content and relevant metadata
Advantages of using Python and NLTK crash course
Practical Understanding of a Corpus and Dataset
Why do we need a corpus?
Corpus Analysis
Types of data attributes
Different file formats for corpora
Preparing a dataset for NLP applications
Understanding the Structure of a Sentences
Components of NLP
Natural language understanding
Morphological analysis - stem, word, token, speech tags
Syntactic analysis
Semantic analysis
Handling ambigiuty
Text data preprocessing
Corpus- raw text
Sentence tokenization
Stemming for raw text
Lemmization of raw text
Stop word removal
Corpus-raw sentences
Word tokenization
Word lemmatization
Working with Term-Document/Document-Term matrices
Text tokenization into n-grams and sentences
Practical and customized preprocessing
Analyzing Text data
Basic feature of NLP
Parsers and parsing
POS tagging and taggers
Name entity recognition
N-grams
Bag of words
Statistical features of NLP
Concepts of Linear algebra for NLP
Probabilistic theory for NLP
TF-IDF
Vectorization
Encoders and Decoders
Normalization
Probabilistic Models
Advanced feature engineering and NLP
Basics of word2vec
Components of word2vec model
Logic of the word2vec model
Extension of the word2vec concept
Application of word2vec model
Case study: Application of bag of words: automatic text summarization using simplified and true Luhn's algorithms
Document Clustering, Classification and Topic Modeling
Document clustering and pattern mining (hierarchical clustering, k-means, clustering, etc.)
Comparing and classifying documents using TFIDF, Jaccard and cosine distance measures
Document classifcication using Naïve Bayes and Maximum Entropy
Identifying Important Text Elements
Reducing dimensionality: Principal Component Analysis, Singular Value Decomposition non-negative matrix factorization
Topic modeling and information retrieval using Latent Semantic Analysis
Entity Extraction, Sentiment Analysis and Advanced Topic Modeling
Positive vs. negative: degree of sentiment
Item Response Theory
Part of speech tagging and its application: finding people, places and organizations mentioned in text
Advanced topic modeling: Latent Dirichlet Allocation
Case studies
Mining unstructured user reviews
Sentiment classification and visualization of Product Review Data
Mining search logs for usage patterns
Text classification
Topic modelling
|
|
|
|
|
|