|
Applied AI from Scratch in Python培训
|
|
班.级.规.模.及.环.境--热.线:4008699035 手.机:15921673576( 微.信.同.号) |
实战授课,培训后免费技术支持。 |
上.课.时.间.和.地.点 |
开课地址:【上海】同济大学(沪西)/新城金郡商务楼(11号线白银路站)【深圳分部】:电影大厦(地铁一号线大剧院站) 【武汉分部】:佳源大厦【成都分部】:领馆区1号【沈阳分部】:沈阳理工大学【郑州分部】:锦华大厦【石家庄分部】:瑞景大厦【北京分部】:北京中山学院 【南京分部】:金港大厦
最新开班 (连续班 、周末班、晚班):即将开课,详情请咨询客服! |
实.验.设.备 |
☆资深工程师授课
☆注重质量
☆边讲边练
☆合格学员免费推荐工作
★实.验.设.备请点击这儿查看★ |
质.量.保.障 |
1、免费重修;
2、课程结束后,授课老师留联系方式,保障培训效果,免费技术支持。
3、推荐机会。 |
课程大纲 |
|
- Supervised learning: classification and regression
Machine Learning in Python: intro to the scikit-learn API
linear and logistic regression
support vector machine
neural networks
random forest
Setting up an end-to-end supervised learning pipeline using scikit-learn
working with data files
imputation of missing values
handling categorical variables
visualizing data
Python frameworks for for AI applications:
TensorFlow, Theano, Caffe and Keras
AI at scale with Apache Spark: Mlib
Advanced neural network architectures
convolutional neural networks for image analysis
recurrent neural networks for time-structured data
the long short-term memory cell
Unsupervised learning: clustering, anomaly detection
implementing principal component analysis with scikit-learn
implementing autoencoders in Keras
Practical examples of problems that AI can solve (hands-on exercises using Jupyter notebooks), e.g.
image analysis
forecasting complex financial series, such as stock prices,
complex pattern recognition
natural language processing
recommender systems
Understand limitations of AI methods: modes of failure, costs and common difficulties
overfitting
bias/variance trade-off
biases in observational data
neural network poisoning
Applied Project work (optional)
|
|
|
|
|
|